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1 Introduction

This report examines a method for handling multiple active goals for mobile robots. Specifically, the focus
is on asynchronous goal activation and on how to incorporate the accomplishment of a newly active goal
into a partially executed plan. A utility based decision theoretic approach is adopted for investigating the
tradeoffs that must be made.

The applicability of decision theory to problems in artificial intelligence and planning in particular has
long been recognized. In his review of the use of decision theory, Horvitz argues for its use as a basis for
making choices in artificial intelligence [Horvitz et al., 1988]. In an early example, Feldman and Sprouli,
in their analysis of planning for the hungry monkey problem, used utility based decision theory to evaluate
plans taking into account uncertainty and risk [Feldman and Sproull, 1977]. More recent work has focused
on time dependent planning [Boddy and Dean, 1989] and on applying decision theory to search [Russell
and Wefald; 1991]. The work presented here differs from these in that it focuses on plan evaluation when
all goals are not initially known and the plan must be reformulated as goals become active. In such cases,
the time dependent utility of goal satisfaction, as well as the time distribution of utilities and resource use,
must be taken into account.

Given a utility based framework, one must choose an appropriate decision criterion. In this report a
number of such criteria are analyzed: net value, benefit-cost ratio, net present value and cutoff period. Net
present value is shown to have some advantages over other criteria when dealing with non-independent
goals with discrete resource requirements and time dependent utilities. Plan evaluation based on net present
value has been incorporated into a planning system that can interrupt an executing plan and dynamically
order goals. The planning system has been applied to two mobile robot domains. The Ambler {Simmons
and Krotkov, 1991], a prototype planetary exploration robot designed to carry out scientific missions, has
been used as a model for a number of simulations. A Hero 2000 robot, used to perform a number of
tasks in our lab, has been used as a vehicle for implementing the ideas. This report examines a number of
examples from both domains to show the advantage of using a decision theoretic approach over heuristic
based methods and fixed priority schemes. In particular, decision theoretic approaches can lead to more
effective usage of the robot’s resources including computational resources.

2 Utility Based Rationality

Modem decision theory is concemed with making rational choices among alternatives [Raiffa, 1968].
Rational is taken to mean choosing the course of action that maximizes the expected value of some desired
quantity, such as utility. Decision theory provides mechanisms for dealing with uncertainty and the cost
of acquiring information. For this reason, it is being increasingly used for planning in real-world domains.
Recent examples of the approach can be found in [Wellman, 1988] and (Chrisman and Simmons, 1991].

There are two requirements for formulating a planning problem in terms of decision theory. A method
is needed to assign benefits or utilities to the accomplishment of each goal and costs or negative utilities to
the consumption of each resource. Secondly, a decision criterion is needed to assess the relative merit of
alternative plans.

The assignment of utilities is highly dependent on the set of tasks being considered and the desired
behaviour. The exact magnitude of the utility values assigned is not as significant as the relative magnitudes
which should reflect the relative priority of the goals.

A number of possible decision criteria have been suggested in the literature [Sassone and Schaffer,
1979]. Much of the body of work done on the development and analysis of the different criteria has focused
on its applicability to economic domains [Simon, 1982]. The insights resulting from this work can be




adapted to the mobile robot domain. Four commonly used criteria are examined below with comments on

2.1 Net Value

The simplest decision criteria that can be used is net value. The net value of a plan is the sum of the expected
benefits minus the sum of the expected costs. The alternative with the highest net value is preferred.
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B; : the benefit incurred at time t.

C;: the costincurred at time t.
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n : the life of the project, or time of the last cost or benefit.

The net value criteria suffers from two crucial short comings. It does not take into account the resources
needed to generate a given net return. It also does not distinguish between alternatives that have different
time distributions for incurring costs and receiving benefits.

The net value method does not exhibit a preference for options that conserve resources. No distinction
is made between two options that have the same net retum but incur different costs. Conserving resources is
desirable to the extent that it allows the unused portion to be used for other purposes. Consuming a resource
involves an opportunity cost corresponding to the gains that could be had by investing the resource in other
ways. This opportunity cost must be taken into account when evaluating alternatives. One method that has
been used is to select the option with the lowest cost when more than one option has the highest net value.
This solution only partially accounts for the opportunity cost and is rarely applicable since it is unlikely that
the net values will match exactly.

Robot
0.5kg ﬂ 5.0kg
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o Plan 1 : Go right, pick up gold, go left, pick up gold.
¢ Plan 2 : Go left, pick up gold, go right, pick up goid.

Figure 1: The greedy plan, plan 1, gets more gold sooner.

The time distribution of costs and benefits is crucial when selecting among altemnatives. It is desirable
to have a greedy bias for acquiring benefits sooner and delaying consumption of resources. Consider




the example shown in figure 1 where a robot is collecting gold, where gold has a fixed utility per pound
collected. A 5.0 kg block of gold is 5 meters to the left of the robot and a 0.5 kg block is 5 meters to the
right of the robot. There are two altemative plans for collecting both blocks depending on which block is
collected first. Both plans have the same net utility, 5.5 kg of gold, but one gets more gold sooner. The
greedy plan shouid be preferred. The extra benefit of collecting the larger block first can be used for a longer
period of time. The robot gets the use of 4.5 more kg of gold for some period of time. Risk is also reduced
by accomplishing the higher utility goal sooner since it reduces the probability that the world will change
before the higher utility goal is achieved. Similarly, delaying resource expenditures allows the resource to
be held longer and possibly used for some option that was not originally available. The net value criteria
makes no distinction between the two plans for collecting the gold.

2.2 Benefit-Cost Ratio
The benefit-cost ratio is the sum of the benefits divided by the sum of the costs.
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Taking the ratio of benefits and costs gives a measure of the rate of return. Alternatives that incur less
cost to produce the same net benefit will be preferred. In economics, investments are selected by ranking the
investment opportunities in order of decreasing benefit-cost ratio and accepting investment opportunities
until the available resources are exhausted or the rate of return falls below the cost of capital. This greedy
optimization algorithm allows the opportunities to be considered independently and leads to a very efficient
decision procedure that is linear in the number of opportunities. Etzioni, in the design of an autonomous
agent, uses the algorithm as a basis for the agent’s decision control loop[Etzioni, 1989].

As Etzioni points out, there are problems when the opportunities require a discrete amount of each
resource and resources are limited [Etzioni, 1989]). In such cases, the problem can be shown to be
intractable by a reduction from the knapsack problem [Garey and Johnson, 1979]. In practice, use of the
greedy algorithm does lead to problems. Imagine a situation in which an exploration robot has located two
adjacent items of interest. One item has a higher value than the other, but also consumes proportionately
more resources to extract. Further suppose that there were not enough resources to take both samples —
exactly one must be chosen. In this case, the greedy algorithm would choose the suboptimal plan that gives
the higher rate of return, but a lower net return.

There is. a modified version of the greedy algorithm in which the greedy solution is compared to a
solution consisting solely of the item with the maximum net return, and the better of the two solutions
selected. This modified algorithm can be shown to be within a factor of two of optimal [Garey and Johnson,
1979]. In the sample selection example above, the modified greedy algorithm correctly chooses the option
with the highest net return. Suppose, however, that the situation was changed so that there were enough
resources to sample both but that the item with the lower rate of return was degrading over time. The
modified greedy algorithm would not be able to generate the optimal plan to first sample the low rate
of return item and then to sample the high rate of retun item. The algorithm fails to find the optimal
solution because the opportunities are not independent. In general, considering opportunities in isolation is
insufficient and combinations must be evaluated when selecting a plan.

Another difficultly with using the benefit-cost ratio is that it is dependent on the exact definition of costs
and benefits. Suppose there are two methods a robot can use to traverse a room: one that is fast, uses little
energy, but is noisy, and a second method that is quiet, but takes longer and uses more energy. Should
the negative utility of disturbing others in the room with the noisy traversal be counted as a cost or as a




negative benefit? Clearly, the way in which such external effects are treated will affect the ratio, and hence
the robot’s decisions.

2.3 Net Present Value

One method for taking the time distribution of utilities into account is to use present values. The present
value of a cost or benefit is the actual value to be received in the future discounted by a fixed discount rate
(d). Using the present value of the costs and benefits takes into account their time distribution. Discounting
future utilities creates a preference for benefits that accrue sooner and costs that occur further in the future.
For example, given the choice between two planstlmtachnevethesunebeneﬁtforthesamelmual cost, the
one that returns the benefit sooner is preferred.

The net present value of a sequence of costs and benefits is the net of the present value of each negative
utility/cost or positive utility/benefit. This is the most widely used metric in cost-benefit analysis and is
generally considered superior to other metrics [Sassone and Schaffer, 1979].
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Resource investments are chosen by generating all feasible combinations of opportunities and selecting
the one with the highest net present value. Even in the case where the investment options are not independent
(as in the second version of the sampling example above) this method prefers the option that maximizes the
net present value of the return.

Net present value treats negative benefits and costs equivalently. There is no need to make arbitrary
distinctions. Summing the costs and benefits does mean, however, that they must be normalized to the same
scale. In economics this is done by expressing quantities in equivalent dollar values. For the robot domain,
quantities can be normalized to their equivalent value in terms of a specific resource or benefit such as time,
battery charge or samples taken. In order to create a preference for conserving resources. the opportunity
costs associated with consuming the resource must be taken into account.

Adopting the use of net present value results in making the correct choices. It does however lead directly
to the intractable problem of having to generate and evaluate a combinatorial number of alternatives. Some
method must be used to reduce the number of alternatives that have to be considered. The approach taken
in this work has been to generate only a subset of the possible combinations and to do this incrementally as
new opportunities become available. Details of the method used are given in the following section on the
- planning framework.

24 Cutoff Period

Another decision criteria that is appropriate in some situations is the cutoff period method. With this
method, a specific length of time is chosen and the altemnative with the best net return up until the cutoff
time is selected. In economics, this method is generally only used to evaluate risky ventures, such as start
up companies. In the agent domain, it would be applicable if the domain imposes a limited window of
opportunity in which the agent can act. For example, if a robot has only two hours before its battery will
run out, it would be appropriate to choose the plan that would produce the highest net utility in two hours.
This method can be used when there are multiple windows of opportunity. For example, if a robot must
recharge for an hour every two hours, each period of activity could be treated as a cutoff period. However,
using the cutoff period method in such a situation would preclude the consideration of plans that require
multiple time windows to complete. We mention the cutoff period method only for completeness.




2.5 Discount Rate

The net present value method requires a discount rate. While discounting future values accounts for the
time preferences of costs and benefits, the choice of a discount rate is highly problematic. The discount rate
reflects a willingness to trade present benefits for future costs. A low discount rate results in decisions that
focus on long term impacts; a high discount rate results in greedy decisions. The discount rate incorporates
assumptions about risk aversion and the predictability of the environment. For example, using a higher
discount rate decreases risk by reducing dependence on the accuracy of predictions about the future since
plans with more current benefits are preferred.

The discount rate we have chosen for planning is based on an estimate of the effective planning window
for the robot. The effective planning window is the duration of time for which it is useful to make plans.
Making plans for events beyond this window of time is of little utility since there is a high likelihood that
the situation will change and the plans will no longer be applicable. The discount rate is set so that utilities
at the end of the effective planning window are discounted by one half. This rate is currently fixed. If the
robot was learning a model of the environment, it would be desirable to adjust the discount rate as the model
was refined and confidence in its accuracy increased.

3 Planning Framework

We have developed a planning framework that is geared toward handling asynchronous activation of goals
involving robot motion and manipulation. A set of abstract actions is used to construct linear, conditional
plans which are refined for execution by means of hierarchical decomposition of the abstract actions.
Associated with each abstract action is the information needed to determine if and how the action can be
interrupted. When a new goal becomes active, the plan generator creates a set of plans by merging the plan
of achieving the new goal with the existing plan. The plan with the highest expected net present value is
selected for continued execution.

3.1 Plan Representation

A conditional plan to achieve a set of goals is represented as a tree of abstract actions. Figure 2 shows a
simplified version of the plan for putting a cup in the bin. The plan consists of two abstract actions: one
to determine if the object is in fact a cup and the second to put it in the bin if it is. There is a branch in
the plan for each possible outcome of the abstract actions and associated with each branch is the a priori
probability of the corresponding outcome. These probabilities are used to weight the value of each branch
when calculating the expected net present value of a plan.

P ul?)'o“

Figure 2: Cup Collection Plan.

Executing actions requires use of the robot’s resources, such as wheels and grippers. As in the O-PLAN
plan representation [Currie and Tate, 1985], each abstract operation specifies the resources that it requires.
Resource information allows the planner to efficiently interrupt an action. For example, if the collect(cup)
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action in Figure 2 were interrupted to handle a recharge goal, the robot would not need to put the cup down
since recharging does not require the gripper resource. Thus, after recharging, the robot can continue to
collect cup plan without having to pick up the cup again which would be quite time consuming. Abstract
actions may need to include “phantom” sub-actions [Sacerdoti, 1977] to establish any required state since
conditions may be clobbered between abstract actions. In the cup collection plan of Figure 2, both abstract
actions include the moveTo(cup) sub-action. The second moveTo is a “phantom™ action since it will not
actually be executed if the plan is not interrupted.

The execution of each abstract action consists of the sequential execution of a number of sub-actions.
For the purpose of interrupting actions, each sub-action is characterized as either uninterruptible, restartable
or resumable. An uninterruptible sub-action cannot be stopped once it has begun exe.vion. For the hero
robot, paper delivery is uninterruptible because if the robot ever put the paper it wss carrying down, it
would never be able to pick it up again. A restartable sub-action can be interrupted, but the entire sub-action
must be repeated when execution is resumed. Any initial effort expended is lost. Scanning the cup can be
interrupted, but a partial scan provides no information. The entire scan must be repeated when the action
is resumed. A resumable sub-action is one that can be interrupted and only the undone portion of the
sub-action needs be completed when execution on it is resumed. For an exploration robot, mapping the
geology in an area is a resumable task. If the task is interrupted and later resumed, the robot only has to
complete the undone portion of the mapping.

Sub-actions that can be interrupted require additional information to be able free and re-acquire resources.
For example, if the robot interrupts the moveTo(bin) sub-action of the collect(cup) action in figure 2 in order
to deliver printer output, its gripper must first be freed by putting down the cup before it can pick up the
printer output. The cup must be then re-acquired before the moveTo(bin) action can be resumed.

3.2 Plan Generation

Generating a plan for a set of goals is, in general, an intractable problem [Chapman, 1987]. The use of
the linearity assumption that goals can be satisfied one at a time enables the planner to decompose the
problem and generate a plan efficiently. Even with this linearity assumption, there is still a combinatorial
number of possible goal orderings that could be considered when trying to optimize the plan. In order to
avoid considering all possible orderings, our plan generator creates only a subset of the alternatives that
is linear in the size of the original plan. The ordering of actions is the original plan is maintained. New
plans are created by inserting the actions for the new goal into the existing plan. If the current action can
be interrupted, one of the new plans will interrupt the action and attempt the new goal immediately. Other
plans are generated by inserting the actions for the new goal after each of the actions in the existing plan.

The decision not to consider goal reordering or interleaving is based on the assumption of a benign
world and a near optimal original ordering for the actions. It is similar to the strategy used in intention-
based planning where the planner makes a commitment to its existing plan and filters out options that are
inconsistent with this commitment [Bratman et al., 1988). Unlike Bratman et al.’s IRMA architecture,
our current planner does not have a mechanism to override its commitment to its current plan. Whether
limiting the planner to examining only a subset of possible goal orderings is rational depends on whether
the opportunity cost of not considering other possible orderings is offset by the savings in computation time
[Doyle, 1988].

The plan generator can also include domain-specific methods for generating plans. For the Hero domain,
a method was added for inserting a new goal when the currently executing action involves carrying an object
from one location to another. An on-the-way plan is created in which the robot immediately starts achieving
the new goal, but drops any objects it is carrying at the point on the new path that is closest to its intended
destination.




4 Hero Robot Domain

The Hero 2000 robot operates in an office setting performing a number of tasks {Simmons et al., 1990).
These tasks include delivering printer output, taking objects from one workstation to another, and finding
cups on the floor and putting them in a bin. The robot must also maintain its battery charge in order to be
able to perform these tasks. The robot has a single manipulator and can carry only one object at a time.

Plan generation and selection using a net present value decision criterion has been incorporated into
the software used to control the Hero 2000 robot. The Task Control Architecture (TCA) [Simmons ef al.,
1990}, an operating system for robots, is used as a basis for the implementation. TCA provides mechanisms
to schedule and control muitiple goals, execute plans and monitor the environment.

Direct experimentation with the Hero robot is time consuming. In order to investigate a larger variety
of examples and a larger range of parameter values, a system for simulating the robot, using the planning
framework described above, was created with the Maple symbolic math system [Char, 1987). The simulation
software is domain independent. It is targeted to a particular domain by specifying action models, expected
time and outcome probabilities, as well as the utility of accomplishing each goal.

Primitive Action Times
Action Time Description
(sec) '
identifyCup 20 Scan and classify a potential cup.
grabCup 10 Grab a cup with the gripper.
putCupInBin 10 Drop the cup in the bin.
grabPaper 15 Grab paper from the printer.
deliverPaper 20 Give paper to the person.
getObject 10 Get an object from a person.
deliverObject 20 Deliver object to a person.
ungrabObject 5 Drop an object on the floor.

Figure 3: Hero Expected Action Times, (seconds) for primitive actions.

The characteristics of the Hero domain were determined empirically (Figure 3 and 4). Euclidean distance
and average speed are used to estimate travel times. A discount rate of 0.2% per second was chosen which
results in discounting utilities six minutes in the future by 1/2. The six minute time frame is sufficient for
the robot to complete one or two tasks, reflecting the robots effective planning horizon.

Locomotion Time

MoveTime(a,b) = i;;:—:—:;“;‘:—ﬁl + stanceT ime(stance(b))

stanceTime(standing) = 0
stanceTime(centered) = 20

Figure 4: Hero Expected Travel Time (seconds and feet). The robot must be centered on an object in
order to scan it or pick it up. Other actions can be performed in the standing stance.




The utility of having the robot accomplish one of its goals depends on its value to the people in the
office in terms of the amount of time it saves them. Time saved, or not saved, was used as a basis for
normalizing costs and benefits. The utility values used are the normalized sums of the costs and benefits
for satisfying each goal. The time dependent nature of the goals was also taken into account. Delivering
printer output and carrying objects from one workstation to another must be done in a timely fashion since
people are waiting. The utility of both these activities is represented by a function that is initially almost
flat, but decrease to near zero after a delay. The height of the function represents the intrinsic value of
accomplishing the goal and the cut off represents the acceptable delay (Eqs 4 and 5). Cup collection is of
general benefit, but since no one is waiting for it, it is time insensitive and of relatively low importance
(Eq 6). Charging after a low battery indication is not directly beneficial to anyone, but is necessary for the
robot to operate. If the robot delays recharging too long and runs out of charge, someone will be required
to intervene. For this reason, recharging is characterized by a function containing a negative exponential
component, making the utility prohibitively negative after an initial delay. This delay represents the time
before the robot would start to lose power (Eq 7).

Utility(printer,delay) = -l-‘*-—el;—:?—,m—__ﬁ 4)
Utility(delivery,delay) = —————1 N ezggw_m &)
Utility(collectCup,delay) = 10 (6)
Utility(recharge, delay) = —ed®lav=200 ¢))

Figure 5: Hero utility fanctions, (delay in seconds)

The following three examples from the Hero domain illustrate the usefulness of the methods described.
In particular, we demonstrate the method’s superiority over fixed priority and heuristic approaches.

4.1 Cup Collection Example

Suppose the robot is attending to a low utility goal when a new high utility request is received. The robot
must decide whether to continue with the current plan or to suspend it until the new high utility goal is
accomplished. In the example, illustrated in figure 6, the robot is executing a plan to collect a cup when it
receivss a request to deliver printer output. Objects are placed in the room in such a way that the cup and
the bin are only short detours on the way to the printer from the initial robot location.

Figure 7 shows how the preferred pian varies as a function of the new goal’s activation time. This graph
was produced by running the simulation with different activation times for the new printer delivery goal.
The graph shows that before the robot has picked up the cup, it will suspend cup collection in favour of
. the printer request. Once the cup is picked up, it will be dropped off on the way to the printer, unless the
robot is sufficiently close to the bin to make putting the cup in the bin worthwhile. The distance at which it
becomes worthwhile to complete the cup collection first is affected by the relative utilities of cup collection
and printer output delivery, by the discount rate, by the cost of re-acquiring the cup, and by the relative
positions of the robot, the bin and the printer. Suspending the cup collection task incurs an extra cost to
retrieve the cup since the robot must put it down in order to deliver the output. The relative positions are
significant since moving toward the bin may move the robot towards or away from the printer.
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Figure 6: Cup Collection Example.

moveTo(cup) cup) drop(cup)
i moveTo(bia) |
Suspend Cup Collection
Suspend Cup on the way _
Yoo ™

Activation Time (seconds)

Figure 7: Best Goal Ordering versus Activation Time. (Cup Collection)

The time line in Figure 8 describes the “Suspend Cup Collection” plan. The time delay for each goal is
the expected time interval between the activation time and the expected time of accomplishment. The utility
of accomplishing each goal is calculated by substituting the goal delay time into the utility equation (Eqs 4 -
. The discount interval is the time interval from the current time to the expected time of accomplishment.

Cup Collection Discount Interval

Cup Collection

ﬂ Discount Interval ﬂ

-
F /1 Time
Printer  pyj G:l Delay
nter .
equest Printer

R
(now) Complete

\

Cup Collection Goal Delay

, Cup Collection

Figure 8: Time Line for Suspending Cup Collection.




The usility values are discounted by the discount interval using formula (3) to determine the net present
value of each plan. The discount interval and the time delay will be different if some time has elapsed since
the activation time, as in Figure 8.

=

=2
——=  Path to printer when sbandoning cup
———o=  Path to printer when completing cup collection

Figure 9: Printer Path Difference.

The tradeoff that is being made can be seen more clearly by considering the differences in the paths the
robot would take to get to the printer. Figure 9 shows the two paths: one that goes directly to the printer
and one that goes by way of the bin. The direct path will always be shorter, but as the robot approaches
the bin, the difference becomes arbitrarily small. The corresponding delay incurred by deferring the printer
goal approaches zero, as does the corresponding cost. At some point, completing the cup collection first
becomes the preferred plan. In Figure 7, this point occurs when the robot is about 4.5 feet from the bin.

- : scan(cup) moveTo(bin)

IO-
V:juoﬂzrl‘itl;‘m :j

4]
2

™) w0 % % ho 2 !

Time (seconds)
Figure 10: Cup Collection Utility Versus Time.

It is interesting to see how sensing operations affect the expected utility of various plans by changing
the expected outcome probabilities. Figure 10 shows how the expected net present value of completing the
cup collection varies with time. The smoothly rising curve is due to discounting of future values. The step
is due to the result of the scan(cup) action. Once the object is determined to be a cup, the expected utility
no longer has to be reduced by the probability that the object is not a cup. Such steps in the utility function
are characteristic of the point in time when a particular branch in a conditional plan is taken.

The example illustrates the advantage of this method over fixed priority schemes. A fixed priority
scheme, as was used in the original Hero system, could create situations where the robot would drop the
cup beside the bin rather than expend the extra few seconds needed to drop it in the bin. This would get
the printer output delivered a few seconds earlier, but it requires the robot to expend a significantly greater
amount of time to return, re-acquire the cup, and finish the task.

This example also serves to show some of the limitations of heuristic-based approaches. As stated
above, the distance at which the cup collection should be completed depends on a number of factors. For
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a heuristic method to take these factors into account would require a large number of very specialized
heuristics [Feldman and Sproull, 1977]. The utility based method is more general. It depends only on
having access to a utility function and on a method of predicting how long a sequence of action will take.

4.2 Delivery Example

B
o]

Figure 11: Delivery Example.

By properly ordering the achievement of goals, the robot can take advantage of synergistic opportunities
derived from the spatial relationships between goals. This result follows naturally from the utility-based
approach. Consider the situation shown in Figure 11: The robot is making a sequence of deliveries, one
from workstation 1 to workstation 2 and a second from workstation 3 to workstation 2. If a printer request
arrives for workstation 3 then the robot can reduce its amount of travel by picking up the output on the way
to workstation 3.

moveTo(W1) moveTo(W2) moveTo(W3) moveTo(W2)

igei(objectl) defivertobject]) igei(object2) Meliver{object2)
Get Output After First Delivery [IENSIENRIIrIIN—— | | P

"y Y100 PR R v '

Activation Time (seconds)
Figure 12: Best Goal Ordering versus Activation Time. (Delivery Example)

Figure 12 shows how the preferred strategy changes with the printer request time. Inserting the printer
output request between the two deliveries reduces the total amount of travel needed. The robot takes
advantage of the fact that the printer output goes to workstation 3, the location where the second delivery
begins. Note that the robot will initially go back to the printer even after starting toward workstation 3 to
do the second delivery. It is advantageous to do so as long as the robot has not moved too far away from
the printer.

A priority based scheme, if used in this example, would not be able to take advantage of the spatial
relationships between the goals. The printer request would always be serviced last since it has the lowest

11




utility. A heuristic-based approach could be used to suggest ordering goals such that the destination of one
was the start of the next. However, this would not take into account situations as in the example where
workstation 2 is only near the printer and not at the same location. In any event, it would be difficult to
encode the spatial information that would determine when it is advantageous to return to the printer and
when to continue on to the workstation.

43 Contingency Example

In the course of working with the Hero Robot. an informal experiment was run to see how people handle
the same tasks as the robot. It was observed that sometimes people would elect to “recharge” rather than go
collect a cup, even though they had sufficient “battery charge”. Invariably, the reason given was that they
wanted to have enough charge in reserve to be able to handle a possible printer or delivery request.

The techniques described in this report can be applied to model this type of contingency planning. The
situation in the experiment was modeled as a choice between two plans: plan,, to collect the cup first,
and plan,, to recharge first. These plans were evaluated taking the possibility of a printer request into
account. It was assumed that there was a constant probability P(printer) of a printer request arriving in
any minute, (the possibility that two or more requests would arrive was ignored). Let Plan(t) be the net
present value at time t of the plan that would be selected if plan, were used and a printer request arrived at
time ¢. Multiplying Plan/(t) by the probability that a request will arrive at time ¢ and discounting it back
to time zero gives the current net present value weighted by its probability. Integrating gives the total net
present value (equation 8). A similar calculation gives the result for plan,.

Using the utility values selected for the domain and a 20% probability ot a printer request arriving from
workstation 3 in any minute resuits in a preference for the plan that recharges. If the possibility of a printer
request is not taken into account, the plan to collect the cup is preferred. Obtaining this result using full
numerical integration in Maple is computationally expensive requiring a few minutes of elapsed time on a
SPARC I workstation. The example does serve to suggest, however, that the approach may be applicable
using a more efficient implementation and further approximations.

P(printer) * Plan/(t)
(1+d)

NPV, = /OT dt + (1 — (P(printer) » T)) + N PV( Plan,) (8)

S Ambler Domain

The Ambler is : ix-legged prototype planetary exploration rover [Simmons and Krotkov, 1991]. Its
proposed tasks include investigating sites of potential interest, taking samples and building terrain maps.
Sites of interest will be identified from existing satellite images or from the images sent back to earth by the
robot. The robot moves very siowly, on the order of half a meter a minute, and the distances between sites
can be relatively large, so travel time dominates estimated plan execution times.

The utility of completing one of the Ambler tasks is essentially time independent. The value of
investigating a particular site or taking a particular sample does not vary with time. For this reason, the
Ambler utility functions are simple constants. Figure 13 gives the values used for the simulation.

The estimated action times for the Ambler are shown in Figure 14. As with the Hero robot, Euclidean
distance and average speed are used to estimate travel times. A discount rate of 0.2% per minute was
chosen. This rate discounts values six hours in the future by 1/2, which is a suitable planning window for
the Ambler.
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Figure 13. Ambler Activity Utilities.

Primitive Action Times
Action Time Description
(min)
Investigate 10 Investigate a site, decide whether to sample or not.
CollectSample 100  Collect and store a sample.

|] Locomotion Time

MoveTime(a,b) = %
AmblerSpeed = 0.5

Figure 14: Ambler Expected Action Times, (minutes and meters/minute).

5.1 Exploration Example

LT

: 8  Request Site

* « Y
/ == [Initial Plan
—"

Figure 15: Ambiler Example 1 : Sample Collection.

Simulations using the Ambler domain were used to investigate the affect of information gathering. As the
rover moves around, it gathers more information about the local environment. This information would
be transmitted back to earth where specialist will use it to identify new sites of interest and update the
probabilities that chosen sites are likely to prove interesting. Transmitting and analyzing the data would
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take considerable time, and the robot may have moved significantly in the duration. This example explores
the tradeoffs in goal ordering as a function of this delay.

The sample collection example (Figure 15) consists of an initial plan of three site investigations. Each
investigation consists of moving to the chosen site and examining it for interesting rock formations. Each
site has a 60% probability of being found interesting, in which case a sample is collected. Suppose that
from the information gathered while moving to the first site, the geology specialist on earth identify a new
site near the first site. Since this site has been seen to some extent, it is given an 80% chance of proving
interesting enough for a sample to be taken.

Sample(1
mrul‘l&lﬁun(l) ) moveTo(2) ... Sample(3)
Compiese Current Action
P o 130 o sl 600
Insesrupt Tims (seconds)

Figure 16: Best goal ordering versus Activation Time.

The preferred plan as a function of time the robot receives the new goal is given in Figure 16. The
results of the evaluation can be understood as follows: If the new request arrives before the Ambler reaches
the first site, it will service the new request first, since it has a higher likelihood of proving interesting. Once
sampling at the first site has begun, it will be completed before investigating the new request. After the
robot has completed sampling at the first site it will visit the new site before visiting sites 2 and 3, as long as
the robot has not moved too far away from site 1. If the Ambler has moved far enough away, it will delay
servicing the new request until i* hag completed the other investigations.

This example serves to show how analysis of new information can be used to activate new goals which
can then be incorporated into the executing plan.

6 Limitations

The plan representation chosen imposes a number of limitations on the types of plans that can be expressed.
For one, there is no way to express partially ordered plans: The representation requires a linear ordering of
abstract actions and primitive actions. Also, there is no way of expressing concurrent execution of actions.

The limitation imposed on concurrent action execution could be removed since the system need only
determine the expected time to complete a given sequence of actions. This is currently done by summing
the expected time for each primitive action. If concurrent execution were allowed, the expected time
calculations would have to take this into account.

The current system never considers reordering the actions in the original plan. In some circumstances,
this leads to the adoption of a plan that is significantly sub-optimal. What is needed is some type of over-ride
mechanism as used in the IRMA architecture{Bratman et al., 1988]. One possible approach wouid be to
find the best place to insert the new goal and then consider reordering the goals scheduled to be achieved
after the new goal. The rational behind this would be that the plan up until the new goal remains unchanged,
and hopefully nearly optimal. This is not true for the remainder of the plan. The initial conditions for the
portion of the plan after the new goal could have changed significantly, providing an opportunity for further
optimization.
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7 Fuature Work

There are a number of open questions that remain to be addressed. These include how to select utility
functions, how to select an appropriate discount rate, and how to deal with uncertainty in action time
estimates.

For the example domains used in this report, the form and parameters of the utility functions were first
formulated with the hope that they would produce the desired behaviour. Experimentation allowed the
parameters to be tuned. Further work remains to be done on how to map desired behaviour to specific
utility functions. To do this involves understanding how the set of utility functions interact to influence
overall behaviour. This is important both for selecting the form of the utility functions and for adjusting the
parameters.

The method of plan selection used does not take into account any measure of the confidence in the
accuracy of the action times and utility estimates. This could be especially important in circumstances
where confidence levels vary significantly. Less credence should be given to plans whose utility is sensitive
to small changes in parameter values for which there is little confidence.

Decision criteria such as net present value that depend on a discount rate are highly sensitive to that
rate. Choosing a discount rate is still a matter of experimentation. Further work is needed to determine
the characteristics of the domain that should be taken into account when selecting a discount rate. One
possibility is to have the robot adjust its discount rate as it refines its time estimates and its estimates about
the probability of future events.

8 Conclusions

This report has presented some initial results on rational planning for mobile robots. The examples presented
show that a mobile robot can take advantage of opportunities as they arise if it can interrupt and reformulate
its plan of action. A decision theoretic approach to plan reformulation is more general than heuristic based
methods and produces more rational results than do fixed priority schemes. The use of a net present value
decision criterion for the mobile robot domain has some advantages over benefit-cost ratio and net value
criterion when dealing with limited resources and non-independent alternatives.

A decision theoretic approach to plan evaluation is useful when dynamically reordering multiple active
goals. Coupled with the use of net present value and consideration of opportunity costs, it provides the
basis for effective operation of a mobile robot.
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